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Abstract
It is well known that the magnetic quantum number m of monopole harmonics
describes quantization corresponding to the z-component of the angular
momentum operator in the framework of su(2) symmetry algebra. Here, it is
shown that the azimuthal quantum number l allocates itself a ladder symmetry
by the operators which are described in terms of l. Furthermore, quantization
of both quantum numbers l and m leads to extracting positive and negative
irreducible discrete representations of the deformed su(1, 1) algebra for l − m

and l + m, respectively. It will also be shown in detail how they in turn lead to
the spectrum-generating algebra for all monopole harmonics.

PACS numbers: 02.30.Gp, 12.39.St, 03.65.Fd, 02.20.Sv, 03.65.−w

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The azimuthal and magnetic quantum numbers l and m via the monopole (generalized)
harmonics describe the surface (angular) part of wavefunctions corresponding to the motion
of a charged particle in the presence of a magnetic monopole which was first studied by
Dirac [1], and then by Wu and Yang [2, 3]. These generalized harmonics are characterized
by the magnetic charge q and should be considered as a complete set of orthonormal bases
for the square integrable sections of complex line bundles over the sphere. Furthermore, it
has been shown that three independent generalizations of the spherical harmonics on sphere,
i.e. Wigner D functions, spin-weighted spherical harmonics and monopole harmonics are
equivalent to each other [4–8]. Many studies have been performed on the magnetic monopole
by other authors, see [9] and references therein. Some of these studies have recently drawn
attention to the infinite dimensional representations of the rotation group by solutions of Dirac’s
magnetic monopole [10, 11]. The authors have shown that the nonunitary representations of
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the rotation group and the generalization of the Dirac quantization condition can be obtained
from the magnetic monopole solutions. Also, realization of finite and unitary irreducible
representations of su(2) Lie algebra via the m index of monopole harmonics is a problem
that arises alternately in the works on mathematical physics (see, for example, [3, 7, 8]).
Both of these are strong motivations which lead us to enquire into their other internal
symmetries.

Simultaneous ladder symmetry with respect to two parameters of special functions has
lead to a deep and extended understanding of solvability, supersymmetry, representation theory
and coherent states for the one-, two- and three-dimensional models. Realization of this idea,
whose formulation has also been performed for the associated Jacobi functions [12], provides
a rich algebraic structure for them and their corresponding differential equation. The ladder
symmetry with respect to the azimuthal quantum number l of monopole harmonics has been
considered in [13] with the limitation 0 � m � l on the magnetic quantum number. In this
paper, in addition to extending the formulation to −l � m � l, the infinite ladder symmetry
with respect to l together with su(2) algebra symmetry for m are applied to show that the
deformed su(1, 1) algebra can also irreducibly be represented by using monopole harmonics.
Here, we will show that the appropriate Hilbert subspaces of all monopole harmonics represent
the deformed su(1, 1) algebra by simultaneous shift operators of both quantum labels l and m
for given values of l−m and l+m, respectively. Therefore, a new spectrum-generating algebra
as an internal symmetry for the Hilbert space corresponding to the monopole harmonics is
constructed.

2. Monopole harmonics Y
N (S);q

lm (θ, φ)

The second-order differential equation corresponding to the Jacobi polynomials of degree n in
the interval −1 � x � +1 and its solutions in terms of the Rodriguez formula are well known
as [12]

(1 − x2)P ′′
n

(α,β)
(x) − [α − β + (α + β + 2)x]P ′

n

(α,β)
(x)

+ n(α + β + n + 1)P (α,β)
n (x) = 0,

P (α,β)
n (x) = an(α, β)

(1 − x)α(1 + x)β

(
d

dx

)n

((1 − x)n+α(1 + x)n+β) with α, β > −1,

(1)

in which an(α, β)’s are the normalization coefficients. If we define the functions P(q)

l,m(x) as

P(q)

l,m(x) := al,m(q)

al−m(m − q,m + q)

√
2l + 1

2
(1 − x)

m−q

2 (1 + x)
m+q

2 P
(m−q,m+q)

l−m (x), (2)

for −l � m � +l, and apply the Jacobi differential equation, then we shall get the following
differential equation:

(1 − x2)P ′′(q)

l,m (x) − 2xP ′(q)

l,m (x) +

(
l(l + 1) − q2 + m2 − 2mqx

1 − x2

)
P(q)

l,m(x) = 0. (3)

The differential equation (3) is invariant under the exchange of positions of m and q parameters.
This implies that P(m)

l,q (x) is another solution to equation (3). Furthermore, since equation (3)

is unaltered when m and q are replaced by −m and −q, respectively, the function P(−q)

l,−m(x) is
also another solution to it. We now note the following useful relation that follows immediately
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from the Leibnitz rule:

(−1)q+m

(
d

dx

)l+m

((1 − x)l+q(1 + x)l−q)

= �(l + m + 1)

�(l − m + 1)
(1 − x)q−m(1 + x)−q−m

(
d

dx

)l−m

((1 − x)l−q(1 + x)l+q). (4)

Thus, for the differential equation (3), the solutions P(−q)

l,−m(x) can also be considered as

P(−q)

l,−m(x) = al,−m(−q)

al,m(q)

�(l + m + 1)

(−1)m+q�(l − m + 1)
P(q)

l,m(x). (5)

It allows us not only to recover all bound states of the monopole problem but also to obtain
positive and negative discrete representations of the deformed su(1, 1) algebra via monopole
harmonics as an internal symmetry. Clearly, if we demand that the following differential
operators [13]

A±(m; q; x) = ±
√

1 − x2
d

dx
+

(
m − 1

2 ∓ 1
2

)
x − q√

1 − x2
, (6a)

A±(l,m; q; x) = ±(1 − x2)
d

dx
− lx + q

m

l
(6b)

simultaneously satisfy the following raising and lowering relations with respect to both indices
l and m,

A+(m; q; x)P(q)

l,m−1(x) =
√

(l − m + 1)(l + m)P(q)

l,m(x), (7a)

A−(m; q; x)P(q)

l,m(x) =
√

(l − m + 1)(l + m)P(q)

l,m−1(x), (7b)

A+(l,m; q; x)P(q)

l−1,m(x) =
√

(l2 − m2)(l2 − q2)(2l − 1)

l2(2l + 1)
P(q)

l,m(x), (8a)

A−(l,m; q; x)P(q)

l,m(x) =
√

(l2 − m2)(l2 − q2)(2l + 1)

l2(2l − 1)
P(q)

l−1,m(x), (8b)

so that the following orthonormality relation is also realized:∫ 1

−1
P(q)

l,m(x)P(q)

l′,m(x) dx = δll′ , (9)

then the normalization coefficients al,m(q) are calculated as

al,m(q) = 1

(−1)m2l

√
�(l + m + 1)

�(l − m + 1)�(l + q + 1)�(l − q + 1)
. (10)

Note that in contrast to 0 � m � n in [13], −l � m � +l is a symmetric interval. Substituting
equation (10) into equation (2), we obtain the following two symmetric properties for all
positive and negative values of m:

P(q)

l,m(x) = (−1)m+qP(−q)

l,−m(x), (11a)

P(q)

l,m(x) = (−1)q−mP(m)
l,q (x). (11b)

3
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If we use equation (11a), it becomes obvious that equations (7a) and (7b) are transformed
to lowering and raising relations corresponding to the index −m of P(−q)

l,−m(x) functions, but
equations (8a) and (8b) remain the same as raising and lowering relations of index l of those
functions respectively.

The surface of a sphere is usually covered by two coordinate patches as the open
neighborhoods of north and south poles as RN = {0 � θ < π} and RS = {0 < θ � π},
named north and south hemispheres, respectively. The second coordinate for both patches is
the auxiliary variable 0 � φ < 2π . The monopole harmonics Y

q

lm(θ, φ) as the sections of the
fiber bundle are defined by two local components Y

N;q
lm (θ, φ) and Y

S;q
lm (θ, φ) on the coordinate

patches RN and RS separately, so that the second component is equal to the product of the
phase factor as e−2iqφ and the first one:

Y
N(S);q
lm (θ, φ) := ei(m±q)φ

√
2π

P(q)

l,m(−cos θ). (12)

Now, it is necessary to emphasize that the monopole harmonics with 0 � m � l have two
different forms:

Y
N(S);q
lm (θ, φ) = ei(m±q)φ

(−1)m2l

√
(2l + 1)�(l + m + 1)

4π�(l − m + 1)�(l + q + 1)�(l − q + 1)

× (1 + cos θ)
q−m

2

(1 − cos θ)
q+m

2

(
1

sin θ

d

dθ

)l−m

[(1 + cos θ)l−q(1 − cos θ)l+q], (13a)

Y
N(S);q
l−m (θ, φ) = ei(−m±q)φ(−1)q

2l

√
(2l + 1)�(l + m + 1)

4π�(l − m + 1)�(l + q + 1)�(l − q + 1)

× (1 − cos θ)
q−m

2

(1 + cos θ)
q+m

2

(
1

sin θ

d

dθ

)l−m

[(1 + cos θ)l+q(1 − cos θ)l−q]. (13b)

From (11a), we get

Y
∗N(S);q
lm (θ, φ) = (−1)m+qY

N(S);−q

l−m (θ, φ), (14)

which is immediately verified by (13a) and (13b). One can show that monopole harmonics
Y

N(S);q
lm (θ, φ) for positive and negative values of m, i.e. −l � m � l, satisfy the following

differential equation:[
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
+ 2iq

cos θ ∓ 1

sin2 θ

∂

∂ϕ

± 2q2 cos θ ∓ 1

sin2 θ
+ l(l + 1)

]
Y

N(S);q
lm (θ, φ) = 0. (15)

With the help of the orthonormality relation of the P(q)

l,m(x) functions given in (9), it is
straightforward to conclude that the monopole harmonics for a fixed magnetic charge q form
a complete set of sections in the angular space∫ 2π

φ=0

∫ π

θ=0
Y

∗N(S);q
lm (θ, φ)Y

N(S);q
l′m′ (θ, φ) sin θ dθ dφ = δll′δmm′ . (16)

Therefore, we can introduce an infinite-dimensional Hilbert space of monopole harmonics:
HN(S) := span

{
Y

N(S);q
lm (θ, φ), l � 0,−l � m � l

}
.
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3. Simultaneous realization of two different types of laddering equations by the
monopole harmonics Y

N (S);q
lm (θ, φ)

In [13], the ladder symmetry with respect to the azimuthal quantum number l has only been
formulated for the positive quantum numbers m as 0 � m � n. In order to realize the
positive and negative integer discrete representations of the deformed su(1, 1) algebra we
have extended the ladder symmetry to −l � m � l here. It is well known that the monopole
harmonics represent the su(2) Lie algebra as

L
N(S);q
+ Y

N(S);q
lm−1 (θ, φ) =

√
(l + m)(l − m + 1)Y

N(S);q
lm (θ, φ), (17a)

L
N(S);q
− Y

N(S);q
lm (θ, φ) =

√
(l + m)(l − m + 1)Y

N(S);q
lm−1 (θ, φ), (17b)

L
N(S);q
3 Y

N(S);q
lm (θ, φ) = mY

N(S);q
lm (θ, φ), (17c)

with the following explicit differential forms for the operators:

L
N(S);q
+ = eiφ

(
∂

∂θ
+ i cot θ

∂

∂φ
± q cot θ − q

sin θ

)
, (18a)

L
N(S);q
− = e−iφ

(
− ∂

∂θ
+ i cot θ

∂

∂φ
± q cot θ − q

sin θ

)
, (18b)

L
N(S);q
3 = −i

∂

∂φ
∓ q. (18c)

Relations (17a) and (17b) immediately follow from (7a) and (7b) for both intervals 0 � m � l

and −l � m � 0, respectively. The operators L
N(S);q
+ , L

N(S);q
− and L

N(S);q
3 satisfy the su(2)

commutation relations as[
L

N(S);q
+ , L

N(S);q
−

] = 2L
N(S);q
3 ,

[
L

N(S);q
3 , L

N(S);q
±

] = ±L
N(S);q
± . (19)

The highest and lowest states Y
N(S);q
ll (θ, φ) and Y

N(S);q
l−l (θ, φ) are annihilated by the operators

L
N(S);q
+ and L

N(S);q
− respectively as

L
N(S);q
± Y

N(S);q
l±l (θ, φ) = 0. (20)

The solutions of these first-order differential equations are

Y
N(S);q
ll (θ, φ) = 1

(−2)l

√
�(2l + 2)

4π�(l + q + 1)�(l − q + 1)
ei(l±q)φ (1 − cos θ)

q+l

2

(1 + cos θ)
q−l

2

, (21a)

Y
N(S);q
l−l (θ, φ) = (−1)q

2l

√
�(2l + 2)

4π�(l + q + 1)�(l − q + 1)
e−i(l±q)φ (1 + cos θ)

q+l

2

(1 − cos θ)
q−l

2

. (21b)

The monopole harmonics are produced by the repetitive application of both raising and
lowering relations of the index m given in (17a) and (17b), as follows:

Y
N(S);q
l±m (θ, φ) =

√
�(l + m + 1)

�(l − m + 1)�(2l + 1)

[
L

N(S);q
∓

]l−m
Y

N(S);q
l±l (θ, φ), (22)

where −l � m � l. It should be emphasized that in each of the relations of (22), the
magnetic charge q can be replaced by −q. Therefore, the commutation relations (19) not

5
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only quantize the index m, but also such a realization of su(2) algebra is responsible for the
generation of monopole harmonics. Remarking relation (11b), the commutation relations
(19) are also responsible for quantization of the magnetic monopole charge q. The Casimir
operator corresponding to this algebra, i.e.

(LN(S);q)2 = L
N(S);q
+ L

N(S);q
− +

(
L

N(S);q
3

)2 − L
N(S);q
3 = −
 + 2q

cos θ ∓ 1

sin2 θ
L

N(S);q
3 , (23)

where the Laplace operator 
 is defined as


 = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
, (24)

satisfies the following eigenvalue equations on the space of monopole harmonics

(LN(S);q)2Y
N(S);q
lm (θ, φ) = l(l + 1)Y

N(S);q
lm (θ, φ) − l � m � l. (25)

Consequently, the finite-dimensional Hilbert subspaces HN(S);l := span
{
Y

N(S);q
lm (θ, φ)

}l

m=−l

constitute irreducible representations for su(2) via the magnetic quantum number m.
We use equations (6b), (8a) and (8b) to obtain the ladder operators which shift the

azimuthal quantum number l of monopole harmonics, i.e.

J
N(S);q
+ (l) = sin θ

∂

∂θ
− i

q

l

∂

∂φ
+ l cos θ ∓ q2

l
, (26a)

J
N(S);q
− (l) = − sin θ

∂

∂θ
− i

q

l

∂

∂φ
+ l cos θ ∓ q2

l
, (26b)

and the corresponding laddering relations for −l � m � l:

J
N(S);q
+ (l)Y

N(S);q
l−1m (θ, φ) =

√
(l2 − m2)(l2 − q2)(2l − 1)

l2(2l + 1)
Y

N(S);q
lm (θ, φ), (27a)

J
N(S);q
− (l)Y

N(S);q
lm (θ, φ) =

√
(l2 − m2)(l2 − q2)(2l + 1)

l2(2l − 1)
Y

N(S);q
l−1m (θ, φ). (27b)

It is easy to see that the monopole harmonics Y
N(S);q
m±m (θ, φ) with m > 0 as the lowest states

are annihilated by the lowering operators J
N(S);q
− (m):

J
N(S);q
− (m)YN(S);q

mm (θ, φ) = 0, (28a)

J
N(S);q
− (m)Y

N(S);q
m−m (θ, φ) = 0. (28b)

The solution of the first-order differential equation (28a) is (21a), and the solution of (28b) is
(21b) if l is replaced by m. For a given m, by repeated application of the raising relation (27a),
one may get the arbitrary monopole harmonics from Y

N(S);q
m±m (θ, φ):

Y
N(S);q
l±m (θ, φ) = �(l + 1)

�(m + 1)

√
(2l + 1)�(2m + 1)�(m + q + 1)�(m − q + 1)

(2m + 1)�(l + m + 1)�(l − m + 1)�(l + q + 1)�(l − q + 1)

× J
N(S);q
+ (l)J

N(S);q
+ (l − 1) · · · JN(S);q

+ (m + 1)Y
N(S);q
m±m (θ, φ). (29)

In this section, the ladder symmetry was extended to the monopole harmonics with negative
magnetic quantum number, just similar to the realization of the su(2) Lie algebra symmetry

6



J. Phys. A: Math. Theor. 41 (2008) 295302 A Dehghani and H Fakhri

which has been known before for −l � m � l. Therefore, the infinite-dimensional
Hilbert subspaces HN(S);m := span

{
Y

N(S);q
lm (θ, φ)

}∞
l=m

represent the ladder symmetry with
respect to the azimuthal quantum number l, irreducibly. From an algebraic point of view,
equation (29) is related to the ladder symmetry which serves as the formal spectrum-generating
algebra. The approach of shifting the azimuthal quantum number l, i.e. (29), is different from
su(2) irreducible representation approach for shifting the magnetic quantum number m, given
in (22).

4. Monopole harmonics and irreducible discrete representations of the deformed
su(1, 1) algebra

Let us first define

K
N;q
±± (l) := ±[

L
N;q
± , J

N;q
± (l)

] = e±iφ

[
∓

(
q

l
− cos θ

)
∂

∂θ
− i

((
q

l
− cos θ

)
cot θ

− sin θ

)
∂

∂φ
+ (q − l) sin θ + q

(
q

l
− cos θ

)
1 − cos θ

sin θ

]
(30a)

K
S;q
±±(l) := ±[

L
S;q
± , J

S;q
± (l)

] = e±iφ

[
∓

(
q

l
− cos θ

)
∂

∂θ
− i

((
q

l
− cos θ

)
cot θ

− sin θ

)
∂

∂φ
− (q + l) sin θ + q

(
q

l
− cos θ

)
1 + cos θ

sin θ

]
(30b)

K
N;q
±∓ (l) := ±[

L
N;q
∓ , J

N;q
± (l)

] = e∓iφ

[
∓

(
q

l
+ cos θ

)
∂

∂θ
+ i

((
q

l
+ cos θ

)
cot θ + sin θ

)
∂

∂φ

+ (q + l) sin θ − q

(
q

l
+ cos θ

)
1 − cos θ

sin θ

]
(30c)

K
S;q
±∓(l) := ±[

L
S;q
∓ , J

S;q
± (l)

] = e∓iφ

[
∓

(
q

l
+ cos θ

)
∂

∂θ
+ i

((
q

l
+ cos θ

)
cot θ + sin θ

)
∂

∂φ

+ (l − q) sin θ − q

(
q

l
+ cos θ

)
1 + cos θ

sin θ

]
. (30d)

Using equations (17a), (17b), (27a) and (27b), it is easily shown that

K
N(S);q
++ (l)Y

N(S);q
l−1m−1(θ, φ) =

√
(2l − 1)(l + m)(l + m − 1)(l2 − q2)

l2(2l + 1)
Y

N(S);q
lm (θ, φ), (31a)

K
N(S);q
−− (l)Y

N(S);q
lm (θ, φ) =

√
(2l + 1)(l + m)(l + m − 1)(l2 − q2)

l2(2l − 1)
Y

N(S);q
l−1m−1(θ, φ), (31b)

K
N(S);q
+− (l)Y

N(S);q
l−1m+1(θ, φ) =

√
(2l − 1)(l − m)(l − m − 1)(l2 − q2)

l2(2l + 1)
Y

N(S);q
lm (θ, φ), (31c)

K
N(S);q
−+ (l)Y

N(S);q
lm (θ, φ) =

√
(2l + 1)(l − m)(l − m − 1)(l2 − q2)

l2(2l − 1)
Y

N(S);q
l−1m+1(θ, φ). (31d)

7
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q;0N(S);
++K

N(S);1
+H

N(S);2
+H
N(S);3
+H

N(S);4
+H

N(S);5
+H

N(S);6
+H

N(S);7
+H

N(S);8
+H
N(S);9
+H

N(S);10
+H

q;3N(S);
++K

q;0N(S);
−−K

l

1+−= ml
m−=l

q;3N(S);
−−K

N(S);0
+Hm

Figure 1. The monopole harmonics lattice corresponding to the bases of the integer positive
irreducible representation subspaces HN(S);d

+ for given values of l − m.

Thus, the laddering equations (17a), (17b), (27a) and (27b), which shift m and l with the
restrictions −l � m � l and l � 0 respectively, lead to the derivation of two different types of
laddering relations for the monopole harmonics Y

N(S);q
lm (θ, φ). They are realized by two pairs

of ladder operators whose corresponding laddering equations shift both of the indices l and
m simultaneously and agreeably, and simultaneously and inversely, respectively. Now we are
in a position that for appropriate configurations of the monopole harmonics, we can realize
the positive and negative integer discrete representations of a deformed su(1, 1) algebra. It
describes an internal additional symmetry for the magnetic monopole problem via surface
bound states.

4.1. Positive integer irreducible discrete representations of the deformed su(1, 1)

algebra for l − m

Let us relabel the monopole harmonics by a new parameter d = l − m with d = 0, 1, 2, . . . ,

instead of l: Y
N(S);q
d+mm (θ, φ). Consequently, the Hilbert space HN(S) can be split into infinite

direct sums of infinite-dimensional Hilbert subspaces as HN(S) = ⊕∞
d=0H

N(S);d
+ . In figure 1,

we have schematically shown all bases of the Hilbert space HN(S) as the points (l,m) with
the −l � m � l limitation in the flat plane with l and m as the horizontal and vertical axes,
respectively. It is clear that the Hilbert subspaces HN(S);d

+ are seen as inclined lines along
the bisector of the first quadrant of the plane. They are classified into two different classes:
HN(S);d=2k

+ = span
{
Y

N(S);q
2k+mm (θ, φ)

}∞
m=−k

and HN(S);d=2k+1
+ = span

{
Y

N(S);q
2k+m+1m(θ, φ)

}∞
m=−k

with
k = 0, 1, 2, . . . . It is not difficult to see from (31a) and (31b) that the following relations on

8
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HN(S);d
+ should be satisfied:

KN(S);q;d
++ Y

N(S);q
d+m−1m−1(θ, φ) =

√
(2d + 2m − 1)(d + 2m)(d + 2m − 1)(d + m + q)(d + m − q)

2d + 2m + 1

×Y
N(S);q
d+mm (θ, φ), (32a)

KN(S);q;d
−− Y

N(S);q
d+mm (θ, φ) =

√
(2d + 2m + 1)(d + 2m)(d + 2m − 1)(d + m + q)(d + m − q)

2d + 2m − 1

×Y
N(S);q
d+m−1m−1(θ, φ), (32b)

KN(S);q
3 Y

N(S);q
d+mm (θ, φ) = mY

N(S);q
d+mm (θ, φ). (32c)

The explicit differential forms of the above operators are

KN;q;d
±± = e±iφ

[
∓

(
q −

(
d − q +

1

2
± 1

2

)
cos θ

)
∂

∂θ
∓ i cos θ

∂2

∂θ∂φ
+

(
1

sin θ
+ sin θ

)
∂2

∂φ2

+ i

(
2

(
d − q +

1

2
± 1

2

)
sin θ − 2q − d − 1

2 ∓ 1
2

sin θ

)
∂

∂φ

+ q
q − (

d − q + 1
2 ± 1

2

)
cos θ

sin θ
(1 − cos θ)

−
(

d − q +
1

2
± 1

2

) (
d − 2q +

1

2
± 1

2

)
sin θ

]
, (33a)

KS;q;d
±± = e±iφ

[
∓

(
q −

(
d + q +

1

2
± 1

2

)
cos θ

)
∂

∂θ
∓ i cos θ

∂2

∂θ∂φ
+

(
1

sin θ
+ sin θ

)
∂2

∂φ2

+ i

(
2

(
d + q +

1

2
± 1

2

)
sin θ +

2q + d + 1
2 ± 1

2

sin θ

)
∂

∂φ

+ q
q − (

d + q + 1
2 ± 1

2

)
cos θ

sin θ
(1 + cos θ)

−
(

d + q +
1

2
± 1

2

) (
d + 2q +

1

2
± 1

2

)
sin θ

]
, (33b)

KN(S);q
3 = −i

∂

∂φ
∓ q. (33c)

Note that before substituting d +m instead of l in equations (31a) and (31b), we have multiplied
both sides by l. Also, equation (32c) is directly followed by (33c).

The operators KN(S);q;d
±± , similar to the angular momentum operators L

N(S);q
± , are linear

in terms of ∂
∂θ

. However, the commutator of the two operators KN(S);q;d
++ and KN(S);q;d

−− is
calculated as a quadratic expression in terms of ∂

∂θ
. Since it is known that these operators

should just act on monopole harmonics belonging to the Hilbert subspace HN(S);d
+ , we take

into account the following operator equality:

∂2

∂θ2
= − cot θ

∂

∂θ
− cot2 θ

∂2

∂φ2
− i

(
2q(cos θ ∓ 1)

sin2 θ
− 2d ± 2q − 1

)
∂

∂φ
+ 2q2 1 ∓ cos θ

sin2 θ

− (d ∓ q)(d ∓ q + 1). (34)

9
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We can easily use the operator equality (34) to check that the functionality in terms of θ is
omitted in the commutation relation

[
KN(S);q;d

++ ,KN(S);q;d
−−

]
:[

KN(S);q;d
++ ,KN(S);q;d

−−
] = −16

(
KN(S);q

3

)3 − 18(2d + 1)
(
KN(S);q

3

)2 − 2(13d(d + 1)

− 4q2 + 5)KN(S);q
3 − (3d2(2d + 3) + d(7 − 4q2) + 2(1 − q2)),[

KN(S);q
3 ,KN(S);q;d

++

] = +KN(S);q;d
++ ,[

KN(S);q
3 ,KN(S);q;d

−−
] = −KN(S);q;d

−− .

(35)

The second and third relations of (35) are directly followed without using (34). The Casimir
operator corresponding to this nonlinear algebra can be calculated to give (see, for example,
[14, 15])

CN(S);q;d = KN(S);q;d
++ KN(S);q;d

−− − 4
(
KN(S);q

3

)4
+ 2(1 − 6d)

(
KN(S);q

3

)3

+ (4q2 − 13d2 + 5d)
(
KN(S);q

3

)2
+ (−6d3 + 4d(d + q2) − 2q2)KN(S);q

3 . (36)

It satisfies the following eigenvalue equations:

CN(S);q;dYN(S);q
d+mm (θ, φ) = d(d − 1)(d + q)(d − q)Y

N(S);q
d+mm (θ, φ) (37)

on the Hilbert subspace HN(S);d
+ . Therefore, the nonlinear commutation relations (35) present

a deformed algebra of su(1, 1) with the (l − m)-integer positive irreducible representation
given in relations (32).

The nonlinear commutation relations (35) constitute a spectrum-generating algebra since
they in turn lead to an algebraic method for deriving monopole harmonics belonging to
HN(S);d

+ . From equation (32b) it becomes obvious that the monopole harmonics Y
N(S);q
k−k (θ, φ)

and Y
N(S);q
k+1−k (θ, φ) are the lowest states of the Hilbert subspaces HN(S);2k

+ and HN(S);2k+1
+ ,

respectively:

KN(S);q;2k
−− Y

N(S);q
k−k (θ, φ) = 0, (38a)

KN(S);q;2k+1
−− Y

N(S);q
k+1−k (θ, φ) = 0. (38b)

Equations (38a) and (38b) are first-order differential equations and have the following
solutions:

Y
N(S);q
k−k (θ, φ) = (−1)k ei(−k±q)φ

2k+1
√

π

√
�(2k + 2)

�(k + q + 1)�(k − q + 1)
(1 − cos θ)

k−q

2 (1 + cos θ)
k+q

2 ,

(39a)

Y
N(S);q
k+1−k (θ, φ) = (−1)q ei(−k±q)φ

2k+ 1
2
√

π

√
(2k + 3)�(2k + 2)

�(k + q + 2)�(k − q + 2)
(1 − cos θ)

k−q

2 (1 + cos θ)
k+q

2

× ((k + 1) cos θ − q). (39b)

The remaining monopole harmonics belonging to the representation spaces HN(S);2k
+ and

HN(S);2k+1
+ can be calculated by successive use of the raising relation (32a), that is

Y
N(S);q
m+2km (θ, φ) =

√
(2m + 4k + 1)�(k + q + 1)�(k − q + 1)

(2k + 1)�(m + 2k + q + 1)�(m + 2k − q + 1)�(2m + 2k + 1)

× [
KN(S);q;2k

++

]m+k
Y

N(S);q
k−k (θ, φ), (40a)

10
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q;0N(S);
+−K

N(S);1
−H

N(S);7
−H

N(S);6
−H

N(S);5
−H

N(S);4
−H

N(S);3
−H

N(S);8
−H

N(S);10
−H

q;3N(S);
−+K

q;0N(S);
−+K

l

1+= ml

N(S);2
−H

N(S);9
−H

q;3N(S);
+−K

m
m=l

N(S);0
−H

Figure 2. The monopole harmonics lattice corresponding to the bases of the integer negative

irreducible representation subspaces HN(S);d ′
− for given values of l + m.

Y
N(S);q
m+2k+1m(θ, φ) =

√
(2m + 4k + 3)�(k + q + 2)�(k − q + 2)

(2k + 3)�(m + 2k + q + 2)�(m + 2k − q + 2)�(2k + 2m + 2)

× [
KN(S);q;2k+1

++

]m+k
Y

N(S);q
k+1−k (θ, φ), (40b)

where m = −k,−k + 1,−k + 2, . . . . While calculating explicit forms of the monopole
harmonics, the expression ∂2

∂θ2 appears on the right hand side of relations (40a) and (40b) the
same as every other one. Therefore, one can alternatively use the operator equality (34).

4.2. Negative integer irreducible discrete representation of the deformed su(1, 1) algebra for
l + m

If relations (31c) and (31d) are used as successive shifts, then they can be considered as
laddering relations with respect to one parameter. In other words by the definition d ′ = l + m

with d ′ = 0, 1, 2, . . . , the Hilbert space HN(S) may be taken into account as the direct sum
of the disjoint infinite-dimensional Hilbert subspaces: HN(S) = ⊕∞

d ′=0H
N(S);d ′
− . Figure 2

shows decompositions of the Hilbert space HN(S) into distinct classes of the Hilbert
subspaces made in two different ways, which are also different from those in figure 1:
HN(S);d ′=2s

− = span
{
Y

N(S);q
2s−mm(θ, φ)

}−∞
m=s

and HN(S);d ′=2s+1
− = span

{
Y

N(S);q
2s−m+1m(θ, φ)

}−∞
m=s

with
s = 0, 1, 2, . . . . The inclined lines along the bisector of the second quadrant of the plane
indicate these two types of decomposition of the Hilbert space schematically. Before we again

11
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substitute d ′ − m for l in equations (31c) and (31d), we multiply them by l. Then, one can
conclude that the monopole harmonics belonging to HN(S);d ′

− satisfy the following relations:

KN(S);q;d ′
+− Y

N(S);q
d ′−m−1m+1(θ, φ)

=
√

(2d ′ − 2m − 1)(d ′ − 2m)(d ′ − 2m − 1)(d ′ − m + q)(d ′ − m − q)

2d ′ − 2m + 1

×Y
N(S);q
d ′−mm (θ, φ), (41a)

KN(S);q;d ′
−+ Y

N(S);q
d ′−mm (θ, φ)

=
√

(2d ′ − 2m + 1)(d ′ − 2m)(d ′ − 2m − 1)(d ′ − m + q)(d ′ − m − q)

2d ′ − 2m − 1

×Y
N(S);q
d ′−m−1m+1(θ, φ), (41b)

KN(S);q
3 Y

N(S);q
d ′−mm (θ, φ) = mY

N(S);q
d ′−mm (θ, φ), (41c)

where the differential explicit forms of the operators are calculated as

KN;d ′;q
±∓ = e∓iφ

[
∓

(
q +

(
d ′ + q +

1

2
± 1

2

)
cos θ

)
∂

∂θ
∓ i cos θ

∂2

∂θ∂φ
−

(
1

sin θ
+ sin θ

)
∂2

∂φ2

+ i

(
2

(
d ′ + q +

1

2
± 1

2

)
sin θ +

2q + d ′ + 1
2 ± 1

2

sin θ

)
∂

∂φ

− q
q +

(
d ′ + q + 1

2 ± 1
2

)
cos θ

sin θ
(1 − cos θ)

+

(
d ′ + q +

1

2
± 1

2

) (
d ′ + 2q +

1

2
± 1

2

)
sin θ

]
(42a)

KS;d ′;q
±∓ = e∓iφ

[
∓

(
q +

(
d ′ − q +

1

2
± 1

2

)
cos θ

)
∂

∂θ
∓ i cos θ

∂2

∂θ∂φ
−

(
1

sin θ
+ sin θ

)
∂2

∂φ2

+ i

(
2

(
d ′ − q +

1

2
± 1

2

)
sin θ +

d ′ − 2q + 1
2 ± 1

2

sin θ

)
∂

∂φ

− q

q +

(
d ′ − q + 1

2 ± 1
2

)
cos θ

sin θ
(1 + cos θ)

+

(
d ′ − q +

1

2
± 1

2

)(
d ′ − 2q +

1

2
± 1

2

)
sin θ

]
(42b)

KN(S);q
3 = −i

∂

∂φ
∓ q. (42c)

According to equation (15), the bases of given Hilbert subspaces HN(S);d ′
− satisfy the following

operator equality:
∂2

∂θ2
= − cot θ

∂

∂θ
− cot2 θ

∂2

∂φ2
− i

(
2q(cos θ ∓ 1)

sin2 θ
+ 2d ′ ± 2q + 1

)
∂

∂φ
+ 2q2 1 ∓ cos θ

sin2 θ

− (d ′ ± q)(d ′ ± q + 1). (43)

12
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Thus, applying this equality to the differential form of the commutator
[
KN(S);q;d ′

−+ ,KN(S);q;d ′
+−

]
,

the nonlinear commutation relation associated with these operators is obtained as follows:[
KN(S);q;d ′

−+ ,KN(S);q;d ′
+−

] = −16
(
KN(S);q

3

)3
+ 18(2d ′ + 1)

(
KN(S);q

3

)2 − 2(13d ′(d ′ + 1)

− 4q2 + 5)KN(S);q
3 + 3d ′2 (

2d ′ + 3
)

+ d ′(7 − 4q2) + 2(1 − q2),[
KN(S);q

3 ,KN(S);q;d ′
−+

] = +KN(S);q;d ′
−+ ,[

KN(S);q
3 ,KN(S);q;d ′

+−
] = −KN(S);q;d ′

+− .

(44)

The second and third relations of equations (44) are directly obtained by using equations (42).
The Casimir operator of the deformed su(1, 1) algebra,

CN(S);q;d ′ = KN(S);q;d ′
−+ KN(S);q;d ′

+− − 4
(
KN(S);q

3

)4
+ 2

(
7 + 6d ′) (

KN(S);q
3

)3 − (13d ′2 + 31d ′

− 4q2 + 18)
(
KN(S);q

3

)2
+ (6d ′3 + 22d ′2 + 2d ′(13 − 2q2) − 6q2 + 10)KN(S);q

3 ,

(45)

satisfies the following eigenvalue equations on the monopole harmonics belonging to the
Hilbert subspace HN(S);d ′

− :

CN(S);q;d ′
Y

N(S);q
d ′−mm (θ, φ) = (d ′ + 2)(d ′ + 1)(d ′ + 1 + q)(d ′ + 1 − q)Y

N(S);q
d ′−mm (θ, φ). (46)

Thus, relations (41) show that the Hilbert subspaces HN(S);d ′
− are (l + m)-integer negative

irreducible representations for the deformed algebra of su(1, 1) as relations (44). From the
comparison of (37) with (46), we conclude that by changing the parameter d to −(d ′ + 1) the
positive representations are transformed to negative ones.

The monopole harmonics Y
N(S);q
ss (θ, φ) and Y

N(S);q
s+1s (θ, φ) as the highest states of two

different types of the Hilbert subspacesHN(S);2s
− andHN(S);2s+1

− are annihilated by the operators
KN(S);q;2s

−+ and KN(S);q;2s+1
−+ , respectively:

KN(S);q;2s
−+ YN(S);q

ss (θφ) = 0, (47a)

KN(S);q;2s+1
−+ Y

N(S);q
s+1s (θφ) = 0, (47b)

which have the following solutions:

YN(S);q
ss = (−1)s ei(s±q)φ

2s+ 3
2
√

π

√
�(2s + 2)

�(s + q + 1)�(s − q + 1)
(1 − cos θ)

s+q

2 (1 + cos θ)
s−q

2 , (48a)

Y
N(S);q
s+1s = (−1)s ei(s±q)φ

2s+1
√

π

√
(2s + 3)�(2s + 2)

�(s + q + 2)�(s − q + 2)
(1 − cos θ)

s+q

2 (1 + cos θ)
s−q

2

× ((s + 1) cos θ + q). (48b)

The repeated application of relation (41a) for d ′ = 2s and d ′ = 2s + 1 yields

Y
N(S);q
2s−mm(θ, φ) =

√
(4s − 2m + 1)�(s + q + 1)�(s − q + 1)

(2s + 1)�(2s − 2m + 1)�(2s − m + q + 1)�(2s − m − q + 1)

×[
KN(S);q;2s

+−
]s−m

YN(S);q
ss (θ, φ), (49a)

13
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Y
N(S);q
2s−m+1m(θ, φ) =

√
(4s − 2m + 3)�(s + q + 2)�(s − q + 2)

(2s + 3)�(2s − 2m + 2)�(2s − m + q + 2)�(2s − m − q + 2)

× [
KN(S);q;2s+1

+−
]s−m

Y
N(S);q
s+1s (θ, φ), (49b)

where m = s, s−1, s−2, . . . . Therefore, we have shown that the set of all monopole harmonics
can be considered by two different methods as the union of irreducible representation subspaces
of the deformed su(1, 1) algebra. We have also concluded that the deformed su(1, 1) algebra
as an internal symmetry for the surface bound states of the magnetic monopole problem
corresponds exactly to a spectrum-generating algebra based on the simultaneous quantization
of both azimuthal and magnetic numbers l and m, respectively.

Finally, it should be emphasized that we can use d and d ′ as the deformation parameters
and obtain the undeformed su(1, 1) algebra as a continuous limit of the commutation rules
(35) and (44), similar to what has been done in [16]. Let us define new generators for the
nonlinear algebras as follows:

MN(S);q
± := 1

d
KN(S);q;d

±± , MN(S);q
3 := KN(S);q

3 + d +
1

2
, (50a)

NN(S);q
± := 1

d ′K
N(S);q;d ′
∓± , NN(S);q

3 := KN(S);q
3 − d ′ − 1

2
. (50b)

If we compute the commutators for the cubic algebras in the new bases, and take the limits
d and d ′ to infinity, then we obtain commutation relations corresponding to the su(1, 1) Lie
algebra as[
MN(S);q

+ ,MN(S);q
−

] = −2MN(S);q
3 ,

[
MN(S);q

3 ,MN(S);q
±

] = ±MN(S);q
± , (51a)[

NN(S);q
+ ,NN(S);q

−
] = −2NN(S);q

3 ,
[
NN(S);q

3 ,NN(S);q
±

] = ±NN(S);q
± . (51b)

It is now straightforward to show that the Casimir operators for the su(1, 1) Lie algebras (51a)
and (51b), i.e.

CN(S);q
M = MN(S);q

+ MN(S);q
− − (

MN(S);q
3

)2
+ MN(S);q

3 , (52a)

CN(S);q
N = NN(S);q

+ NN(S);q
− − (

NN(S);q
3

)2
+ NN(S);q

3 , (52b)

can be followed from the deformed Casimir operators (36) and (45) by the limiting processes
d → ∞ and d ′ → ∞, respectively. Note that in this case, all constant terms in the deformed
Casimir operators must be subtracted before the limits d and d ′ to infinity are considered.

5. Conclusion

In this paper, positive and negative integer irreducible representations of a deformed su(1, 1)

algebra on the space of monopole harmonics are obtained for given values of l − m and l + m,
respectively. They are realized by the ladder differential operators which change l and m
by one unit. The positive and negative irreducible nonunitary representations (32) and (41)
of the deformed su(1, 1) algebra are the output of the ladder symmetries (17a),(17b) and
(27a),(27b). For this reason, we call them ‘internal symmetries’ which are in turn considered
as new spectrum-generating symmetries. These realizations of the deformed algebra are
therefore understood as an internal symmetry for the Hilbert space corresponding to all

14
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monopole harmonics. Note that the quantization of both azimuthal and magnetic numbers
l and m of the monopole harmonics are used jointly. Therefore, the nonlinear commutation
relations (35) and (44) not only quantize the indices l and m as mentioned above, but also such
a realization of the deformed su(1, 1) algebra is responsible for the generation of monopole
harmonics.
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